Convergence of Galerkin Approximations for the Korteweg - de Vries Equation
نویسندگان
چکیده
Standard Galerkin approximations, using smooth splines on a uniform mesh, to 1-periodic solutions of the Korteweg-de Vries equation are analyzed. Optimal rate of convergence estimates are obtained for both semidiscrete and second order in time fully discrete schemes. At each time level, the resulting system of nonlinear equations can be solved by Newton's method. It is shown that if a proper extrapolation is used as a starting value, then only one step of the Newton iteration is required.
منابع مشابه
A Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملRough solutions for the periodic Korteweg–de Vries equation
We show how to apply ideas from the theory of rough paths to the analysis of low-regularity solutions to non-linear dispersive equations. Our basic example will be the one dimensional Korteweg– de Vries (KdV) equation on a periodic domain and with initial condition in FLα,p spaces. We discuss convergence of Galerkin approximations, a modified Euler scheme and the presence of a random force of w...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملA Posteriori Error Estimates for Conservative Local Discontinuous Galerkin Methods for the Generalized Korteweg-de Vries Equation
We construct and analyze conservative local discontinuous Galerkin (LDG) methods for the Generalized Korteweg-de-Vries equation. LDGmethods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives. The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuo...
متن کامل